
MATLAB Image Acquisition Toolbox:
BitFlow Adaptor Custom Properties

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

Table of Contents
Introduction..3
Device Specific Property Usage..3

The Source Object...3
Accessor and Modifier Methodology..3
Advanced Adaptor Initialization..4

BitFlow Adaptor Device Specific Properties..5
BFReg..5
BFRegVal...5
BuffersAllocated...5
BuffersToUse...5
CLSerialBaudRate...6
CLSerialBytesDropped...6
CLSerialBytesQueued..6
CLSerialLineEndAscii...6
CLSerialLineEndHex..7
CLSerialQueueLen...7
CLSerialReadAscii...7
CLSerialReadHex..8
CLSerialReadLen...8
CLSerialTimeout..9
CLSerialWriteAscii...9
CLSerialWriteHex...9
CXPRegAddr..10
CXPRegReadAscii...10
CXPRegReadHex..10
CXPRegReadLen...10
CXPRegVal..11
CXPRegWriteAscii...11
CXPRegWriteHex..11
Exposure..11
GPIn0 to GPIn4..12
GPOut0 to GPOut6..12
LineFrame..12
TriggerMode...13
UseHardwareROI...13

Appendix A: Notes on Data-types...14
I. IMAQ Integers and Unsigned Integer Properties...14
II. Hex-array Strings...14

Appendix B: M-Functions..15
I. bf_dec2hex.m...15
II. bf_hex2dec.m...15
III. bf_bytary2hexstr.m...15
IV. bf_hexstr2bytary.m...16

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

Introduction
Ideal for use in research, education and any other environment desiring rapid application development, the
MathWorks, Inc. MATLAB Image Acquisition Toolbox (IMAQ), paired with the Image Processing Toolbox,
provides a consistent programmatic framework with which advanced image capture and processing can be
achieved. In certain use cases, however, the standard feature set of the Image Acquisition Toolbox can be
found inadequate. To accommodate users with more demanding needs, individual Adaptors may provide
accessors and modifiers to device specific properties, exposing more of the underlying hardware's full
capabilities. It is the express purpose of this document to detail and explain the device specific properties
included in the BitFlow, Inc. Adaptor for the MATLAB Image Acquisition Toolbox.

Detailed information on the use of MATLAB and its various toolboxes can be found on the MathWorks
website, including demonstration programs and complete API documentation. Documentation of the MATLAB
IMAQ specifically is available on its product webpage.

Device Specific Property Usage

The Source Object
Device specific properties are interfaced using the video Source object, a property of the video object, which
can be acquired using one of two methods:

vidobj = videoinput('bitflow') % Create the video object
srcobj = get(vidobj, 'Source') % Acquire the Source object

or

vidobj = videoinput('bitflow') % Create the video object
srcobj = vidobj.Source % Acquire the Source object

Accessor and Modifier Methodology
Three methods are provided by the Image Acquisition Toolbox to access or modify object properties: Verbosely
using the get and set functions, concisely via the dot operator, and visually via the inspect function and
corresponding GUI dialog. Properties are accessed and modified using the following command operations:

get(srcobj) % List all available properties

returned_value = get(srcobj, 'Property') % Verbose accessor

set(srcobj) % List each property and its valid values

set(srcobj, 'Property') % List valid values for the property

set(srcobj, 'Property', new_value) % Verbose modifier

returned_value = srcobj.Property % Concise accessor

srcobj.Property = new_value % Concise modifier

Alternatively, a GUI dialog is produced by running inspect(srcobj), which provides an overview of all
available properties and their values as of the previous action (dialog open, property modification). This allows
non read-only properties to be modified using the mouse and keyboard, for those who prefer such interaction.

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

http://www.mathworks.com/products/imaq/
http://www.mathworks.com/

Advanced Adaptor Initialization
As described in the MATLAB IMAQ documentation, the videoinput command can provide configuration
information to an IMAQ adaptor via a format string, especially to supply a non-standard camera configuration
file. Additionally, the standard IMAQ adaptor features (including triggering and region-of-interest
configuration) may be initialized with non-default values by providing property-value pairs to the videoinput
command. The format string and property pairs are provided using this syntax:

videoinput('bitflow', <board-index>, <format-string>, <property-name-1>,...
 <property-value-1>, … , <property-name-N>, <property-value-N>)

The BitFlow adaptor supports setting a camera file via the format string as one would expect from the IMAQ
documentation:

% Initialize a Karbon CXP with a synthetic image camera file.
vidobj = videoinput('bitflow', 1, 'Generic-Synthetic-1024x1024-E1.kcxp')

Expanding on the format string concept, the BitFlow adaptor (from version 1.2) supports non-default
initialization of the device-specific properties (the raison d'etre of this document, and separate from the standard
adaptor features videoinput accepts) using a list of property-value pairs specified within the format string.
Each pair is begun with a semicolon, followed by the property name, the equal sign, then the property value. So
to create a video object with five BuffersToUse, the following code may be used:

vidobj = videoinput('bitflow', 1, ';BuffersToUse=5')

This example is particularly useful, because the BitFlow adaptor attempts to allocate acquisition buffers as soon
as the video object is created. By setting this value via the format string, rather than via the video source object
after initialization, the extra step of deallocating then reallocating the buffers can be circumvented.

Any data coming before the first property pair in the format string is taken to be a camera file name, and no
parsing or cleanup is performed upon any part of the string, beyond the simple tokenization necessary to extract
each element. If no camera file is specified (as in the example above), the default camera file attached using the
BitFlow SysReg utility is used, just as if no format string were specified at all. Any number of property pairs
may be provided, and even repeated, which will be executed in the order provided, left-to-right. The only
exception to the order rule is BuffersToUse, the first pair of which by necessity is set before basic board
initialization.

% Configure the board for an Adimec Quartz camera, allocating 25 acquisition
% buffers. Set the DeviceUserID CoaXPress Bootstrap register on the Quartz
% to 'Hello World!', and enable the Adimec test pattern.
frmtstr = ['Adimec-Quartz-CXP-2Kx1K-E1-2XDMA.kcxp'...
 ';BuffersToUse=25'...
 ';CXPRegAddr=8384'...
 ';CXPRegWriteHex=48656C6C6F20576F726C642100000000'...
 ';CXPRegAddr=33116'...
 ';CXPRegVal=65536'];
vidobj = videoinput('bitflow', 1, frmtstr)

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

http://www.mathworks.com/products/imaq/

BitFlow Adaptor Device Specific Properties
The following are the device specific properties provided by the BitFlow, Inc. MATLAB Image Acquisition
Toolbox adaptor. See the Device Specific Property Usage section for an overview on how device specific
properties are used.

BFReg
An enumerated accessor and modifier specifying which BitFlow board register should be read or written by the
BFRegVal property. Each complete register and bit-field sub-register available on the frame grabber will be
listed in the enumeration. Details on the registers available for your specific board are listed in the Hardware
Reference Manual available at the Downloads page of the BitFlow website.

Type: Enumeration
Default value: 'con0'
Valid values: Board dependent
Read only: Never

BFRegVal
An integer accessor to and modifier of the BitFlow board register corresponding to the selected BFReg
property. Registers are up to 32-bits long and can be read or written at any time, although not all registers are
static, some registers are read-only and some registers are write only. Reference the appropriate BitFlow
Hardware Reference Manual – available at the Downloads page of the BitFlow website – for detailed
information regarding your board's registers.

See also: Appendix A: Notes on Data-types > IMAQ Integers and Unsigned Integer Properties

Type: Integer
Default value: Register dependent or N/A
Valid range: -2147483648 to 2147483647 (complete 32-bit signed integer range)
Read only: Register dependent

BuffersAllocated
This read-only integer indicates how many buffers the adaptor has actually allocated in RAM for the accessed
instance of the current Virtual Frame Grabber (VFG). The number of buffers desired for allocation is specified
by the BuffersToUse property. The value returned will be zero if another instance of the same VFG is actively
acquiring, or if the buffers could not be allocated (usually resulting from memory size limitations). Otherwise,
the value of Buffers Allocated should equal that of BuffersToUse. During run-time, reading BuffersAllocated
will attempt to dynamically allocate the desired number of buffers before returning, and can be used to verify
that the VFG is ready for acquisition.

Type: Integer
Default value: N/A
Valid range: 0 2∪ to 50,000
Read only: Always

BuffersToUse
In complement of the BuffersAllocated property, this integer value can be read or written at any time, though

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

http://www.bitflow.com/index.php/Downloads
http://www.bitflow.com/index.php/Downloads

allocation may not be performed immediately, as the buffer object is shared between each instance of a given
Virtual Frame Grabber (VFG), necessitating that allocations only be performed when no other instance of the
VFG is acquiring. Additionally, if the specified BuffersToUse would exceed available RAM if allocated, no
allocation will occur. The BuffersAllocated property should generally be checked before attempting to begin
acquisition to verify that the desired BuffersToUse are actually available and ready to use.

Type: Integer
Default value: 10
Valid range: 2 to 50000
Read only: Only while this instance is acquiring

CLSerialBaudRate
The baud rate of the Camera Link serial port. This must be set to match the current baud rate of the attached
camera for communication to succeed at all. In practice, no current BitFlow frame grabbers support 921600
baud operations, but the option is available nevertheless.

Type: Enumeration
Default value: '9600'
Valid values: '9600', '19200', '38400', '57600', '115200', '230400', '460800', '921600'
Read only: Never
Availability: Camera Link frame-grabbers

CLSerialBytesDropped
The number of bytes received by the Camera Link serial port that were previously queued (see
CLSerialBytesQueued), but overwritten by incoming data before they could be read (by CLSerialReadAscii or
CLSerialReadHex). This value is reset to zero, if CLSerialQueueLen is changed.

Type: Integer
Default value: 0
Valid range: 0 to 2147483647
Read only: Always
Availability: Camera Link frame-grabbers

CLSerialBytesQueued
The number of bytes received by the Camera Link serial port that are still in the read queue. Use
CLSerialReadAscii or CLSerialReadHex to read this data before it is overwritten. Any data that is overwritten
before being read is counted by CLSerialBytesDropped. For each byte of data read, CLSerialBytesQueued will
be decremented. If the queue length is changed by setting CLSerialQueueLen, all previously queued data is
cleared, and consequently, CLSerialBytesQueued will go to zero until more data is received.

Type: Integer
Default value: 0
Valid range: 0 to 2147483647
Read only: Always
Availability: Camera Link frame-grabbers

CLSerialLineEndAscii
One of the Camera Link serial read conditions, along with CLSerialReadLen. CLSerialLineEndAscii represents

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

the same internal variable as CLSerialLineEndHex; that is, each represents the same data, but in a different
format. This condition is disabled if set to an empty string. See CLSerialReadAscii or CLSerialReadHex for
more information regarding the serial read conditions.

Use MATLAB's sprintf function to generate non-printable string characters, such as carriage return and line
feed, which happen to be the default value (eg., CLSerialLineEndAscii = sprintf('\r\n');).
Because MATLAB IMAQ handles strings as C-style ASCII arrays, it is not possible to set line-end sequence
with a null-byte using CLSerialLineEndAscii, although this can be done using CLSerialLineEndHex.

Type: String
Default value: Carriage return-line feed (ie, C-string “\r\n”)
Read only: Never
Availability: Camera Link frame-grabbers

CLSerialLineEndHex
One of the Camera Link serial read conditions, along with CLSerialReadLen. CLSerialLineEndHex represents
the same internal variable as CLSerialLineEndAscii; that is, each represents the same data, but in a different
format. This condition is disabled if set to an empty string. See CLSerialReadAscii or CLSerialReadHex for
more information regarding the serial read conditions.

See also: Appendix A: Notes on Data-types > Hex-array Strings

Type: String
Default value: 0D0A (hex-array representation of carriage return and line feed)
Read only: Never
Availability: Camera Link frame-grabbers

CLSerialQueueLen
The byte-length of the Camera Link serial data receiving queue. The queue is a circular buffer, which queues
data whenever it is received, overwriting the oldest queued data if necessary (see CLSerialBytesDropped). The
user removes data from the queue using either CLSerialReadAscii or CLSerialReadHex. Setting a longer queue
length reduces the risk that data will be overwritten before it can be read, but requires more system memory.
Any time the queue length is changed, all currently queued data is cleared (consequently, CLSerialBytesQueued
goes to zero), and CLSerialBytesDropped is reset to zero.

Type: Integer
Default value: 4096
Valid range: 256 to 65536
Read only: Never
Availability: Camera Link frame-grabbers

CLSerialReadAscii
Read and dequeue data from the Camera Link serial receiving queue as an ASCII string. The length of data
read depends upon the read condition met:

1. Null-terminator – If a null-terminator is found that would yield a string-length (including the null-
terminator) less-than-or-equal-to CLSerialReadLen, dequeue and return all data up-to-and-including the
null-terminator.

2. Line-end sequence – If the sequence is found (CLSerialLineEndAscii/CLSerialLineEndHex), and the

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

length up-to-and-including the sequence is less-than-or-equal-to CLSerialReadLen, dequeue and return
all data up-to-and-including the sequence. If the line-end sequence is empty, this condition is disabled,
and will never be met.

3. Read-length – If the amount of available data matches or exceeds CLSerialReadLen, dequeue and return
CLSerialReadLen bytes of the data. If CLSerialReadLen is zero and there is any data queued, dequeue
and return whatever length of data is currently available.

4. Timeout – If CLSerialTimeout is exceeded, dequeue nothing and return an empty string.

These are evaluated in the listed order whenever more data is received by the queue, until a condition is met.

Because MATLAB IMAQ handles string properties using C-style ASCII arrays, it is not possible to return
ASCII data beyond a null-terminator, and therefore an empty string may be returned if the only queued data is a
null-terminator. To read raw binary data, and to circumvent the limitations of C-style ASCII strings, use
CLSerialReadHex instead.

To write ASCII data to the port, see CLSerialWriteAscii.

Type: String
Read only: Always
Availability: Camera Link frame-grabbers

CLSerialReadHex
Read and dequeue data from the Camera Link serial receiving queue as a hex-array string. The length of data
read depends upon the read condition met:

1. Line-end sequence – If the sequence is found (CLSerialLineEndAscii/CLSerialLineEndHex), and the
length up-to-and-including the sequence is less-than-or-equal-to CLSerialReadLen, dequeue and return
all data up-to-and-including the sequence. If the line-end sequence is empty, this condition is disabled,
and will never be met.

2. Read-length – If the amount of available data matches or exceeds CLSerialReadLen, dequeue and return
CLSerialReadLen bytes of the data. If CLSerialReadLen is zero and there is any data queued, dequeue
and return whatever length of data is currently available.

3. Timeout – If CLSerialTimeout is exceeded, dequeue nothing and return an empty string.

These are evaluated in the listed order whenever more data is received by the queue, until a condition is met.
To read ASCII data from the serial queue, use CLSerialReadAscii.

To write hex-array data to the port, see CLSerialWriteHex.

See also: Appendix A: Notes on Data-types > Hex-array Strings

Type: String
Read only: Always
Availability: Camera Link frame-grabbers

CLSerialReadLen
The desired and maximum length of data to read from the Camera Link serial receive queue in a single read
operation. This is one of the read conditions (see also CLSerialLineEndAscii/CLSerialLineEndHex), and limits
absolutely the amount of data that can be returned in a single read. If the line-end condition is disabled (set to
an empty string) and CLSerialReadHex is used to read, this is the exact length of data that will be returned,

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

barring a timeout.

If CLSerialReadLen is set to zero, whatever length of data is available at the time of a read will be returned,
unless another condition is met first.

Type: Integer
Default value: 2048
Valid range: 0 to 65535
Read only: Never
Availability: Camera Link frame-grabbers

CLSerialTimeout
The timeout period in milliseconds for calls to CLSerialReadAscii and CLSerialReadHex. If the timeout is
reached, those functions will return empty strings. If the CLSerialTimeout is set to its maximum value, the read
operations will never time-out.

Type: Integer
Default value: 100
Valid range: 0 to 65536 (milliseconds)
Read only: Never
Availability: Camera Link frame-grabbers

CLSerialWriteAscii
Write an arbitrary-length ASCII string to the Camera Link serial port, excluding the null-terminator. Simply
assign a string to this property and its contents will be written to the port as ASCII values, up-to-but-excluding
the null-terminator. Use CLSerialWriteHex to write raw binary data to the port, which can write zero valued
bytes (ie., null-terminators). If read, this property will always return an empty string.

Keep in mind that cameras controllable with ASCII commands often expect each command to be followed by a
carriage return character. This can be easily achieved using MATLAB's sprintf function (eg.,
CLSerialWriteAscii = sprintf('%s\r', my_command_string);).

To read ASCII data from the port, see CLSerialReadAscii.

Type: String
Read only: Never
Availability: Camera Link frame-grabbers

CLSerialWriteHex
Write an arbitrary-length hex-array string to the Camera Link serial port. Simply assign a hex-array string to
this property and the binary sequence represented by the hex-array will be written. Use CLSerialWriteAscii to
write the ASCII values of a string sequence to the port. If read, this property will always return an empty string.

To read hex-array data from the port, see CLSerialReadHex.

See also: Appendix A: Notes on Data-types > Hex-array Strings

Type: String
Read only: Never
Availability: Camera Link frame-grabbers

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

CXPRegAddr
An integer value used to select the current CoaXPress camera register. The available registers and their
function will vary substantially from camera-to-camera. Consult the camera vendor for details about available
registers, or consult the CoaXPress documentation (available from CoaX Press.com) for details regarding the
standardized Bootstrap registers.

See also: Appendix A: Notes on Data-types > IMAQ Integers and Unsigned Integer Properties

Type: Integer
Default value: 0
Valid range: -2147483648 to 2147483647 (complete 32-bit signed integer range)
Read only: Never
Availability: CoaXPress frame-grabbers, BitFlow SDK ≥ 5.70

CXPRegReadAscii
Use this property to read CXPRegReadLen bytes of data from the CoaXPress camera register space, starting
from address CXPRegAddr. Because ASCII strings are null-terminated, if the data read contains a zero valued
(null-terminator) byte, the string will be cut short to that length proceeding that byte. Use CXPRegReadHex to
read binary data, which will not be cut short by null-valued bytes.

To write ASCII data to a register sequence, see CXPRegWriteAscii.

Type: String
Read only: Always
Availability: CoaXPress frame-grabbers, BitFlow SDK ≥ 5.70

CXPRegReadHex
Use this property to read CXPRegReadLen bytes of data from the CoaXPress camera register space, starting
from address CXPRegAddr. Unlike CXPRegReadAscii, this will always return the full byte length of data,
formatted as a hex-array string.

To write hex-array data to a register sequence, see CXPRegWriteHex.

See also: Appendix A: Notes on Data-types > Hex-array Strings

Type: String
Read only: Always
Availability: CoaXPress frame-grabbers, BitFlow SDK ≥ 5.70

CXPRegReadLen
The number of bytes to be read from the CoaXPress camera register space (starting from CXPRegAddr) upon
the next call to CXPRegReadAscii or CXPRegReadHex.

Type: Integer
Default value: 4
Valid range: 1 to 2147483647
Read only: Never
Availability: CoaXPress frame-grabbers, BitFlow SDK ≥ 5.70

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

http://www.coaxpress.com/
http://www.coaxpress.com/

CXPRegVal
Get or set the current 32-bit unsigned integer value at camera register CXPRegAddr.

See also: Appendix A: Notes on Data-types > IMAQ Integers and Unsigned Integer Properties

Type: Integer
Default value: Register dependent or N/A
Valid range: -2147483648 to 2147483647 (complete 32-bit signed integer range)
Read only: Never
Availability: CoaXPress frame-grabbers, BitFlow SDK ≥ 5.70

CXPRegWriteAscii
Write an arbitrary-length ASCII sequence to the CoaXPress camera register space, starting at address
CXPRegAddr. Simply assign an ASCII string to this property, and it will be written byte-for-byte, up-to-and-
including the null-terminator character. Note that some CoaXPress cameras have limitations upon where data
sequences may be written, and may also have restrictions on the data length that can be written; consult the
camera manual for more information.

Use CXPRegReadAscii to read data as ASCII strings. Use CXPRegWriteHex to write pure binary data.

If read, this node will always return an empty string.

Type: String
Read only: Never
Availability: CoaXPress frame-grabbers, BitFlow SDK ≥ 5.70

CXPRegWriteHex
Write an arbitrary-length hex-array sequence to the CoaXPress camera register space, starting at address
CXPRegAddr. Simply assign a hex-array string to this property, and the equivalent binary data will be written
in its entirety. Note that some CoaXPress cameras have limitations upon where data sequences may be written,
and may also have restrictions on the data length that can be written; consult the camera manual for more
information.

Use CXPRegReadHex to read data as hex-array strings. Use CXPRegWriteAscii to write ASCII string data.

If read, this node will always return an empty string.

See also: Appendix A: Notes on Data-types > Hex-array Strings

Type: String
Read only: Never
Availability: CoaXPress frame-grabbers, BitFlow SDK ≥ 5.70

Exposure
A double precision floating point value specifying the desired camera exposure period in milliseconds. This
property has a limited range and may not work with all cameras; a camera may require special configuration
before it will work with the frame grabber specified exposure period. Further, the value of the Exposure and
LineFrame properties are interdependent, as the exposure period should never exceed the line frame period. For
additional details, consult to the relevant BitFlow Hardware Reference Manual for your board and the
manufacturer's reference materials for whatever camera is to be used.

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

http://www.bitflow.com/index.php/Downloads

Type: Double
Default value: Camera file dependent
Valid range: 0 to 2275.555284
Read only: Never

GPIn0 to GPIn4
Integer accessors to the five general purpose inputs. These include both single ended TTL and Differential
(LVDS) inputs, with configurations varying from board to board. The only valid values are zero and one, with
the former representing an electrical low and the later an electrical high. These properties can be used in
conjunction with the general purpose outputs, GPOut0 to GPOut6, to interface with external devices.

The general purpose inputs are also accessible via the board registers using the BFReg and BFRegVal
properties. Not every BitFlow frame grabber has all five of these inputs. Consult the relevant BitFlow
Hardware Reference Manual for additional details regarding your board model.

Type: Integer
Default value: Hardware input state determined
Valid range: 0 or 1
Read only: Always

GPOut0 to GPOut6
Integer accessors to and modifiers of the seven general purpose outputs. These include single ended TTL,
Differential (LVDS), and Open Collector outputs, with configurations varying from board to board. The only
valid values are zero and one, with the former representing an electrical low and the later an electrical high.
These properties can be used in conjunction with the general purpose inputs, GPIn0 to GPIn4, to interface with
external devices.

The general purpose outputs are also accessible via the board registers using the BFReg and BFRegVal
properties, with advanced configurations possible by setting the GPOUT0_CON to GPOUT6_CON registers to use
the various available signal generating sources. Not every BitFlow frame grabber has all seven of these outputs.
Consult the relevant BitFlow Hardware Reference Manual for additional details regarding your board model.

Type: Integer
Default value: 0
Valid range: 0 or 1
Read only: Never

LineFrame
A double precision floating point value specifying the desired camera line/frame period in milliseconds. The
line period is equal to 1/line rate, similarly the frame period is equal to 1/frame rate. This property has a limited
range and may now work with all cameras; a camera may require special configuration before it will work with
the frame grabber specified line/frame period. Further, the value of the LineFrame and Exposure properties are
interdependent, as the line frame period should never drop below the exposure period. For additional details,
consult to the relevant BitFlow Hardware Reference Manual for your board and the manufacturer's reference
materials for whatever camera is to be used.

Type: Double
Default value: Camera file dependent
Valid range: 0.000136 to 2275.555420

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

http://www.bitflow.com/index.php/Downloads
http://www.bitflow.com/index.php/Downloads
http://www.bitflow.com/index.php/Downloads

Read only: Never

TriggerMode
An enumeration, providing several triggering modes, which control at a low level the mode of acquisition. The
default mode is 'Auto', which selects the most likely appropriate mode for the current trigger source, as
configured in the IMAQ video device. The other options are described fully in the TrigMode portion of the
CiConVTrigModeSet function documentation, available in the BitFlow SDK Reference Manual. Certain
modes are not available on every board, and will generate an error at acquisition start, if selected.

Type: Enumeration
Default value: 'Auto'
Valid values: 'Auto', 'Free Run', 'One Shot', 'Acquisition Command', 'Acqusition Command Start Stop',

'Continuous Data', 'One Shot Self Triggered', 'One Shot Start A Stop B',
'One Shot Start A Stop A', 'Snap Qualified', 'Continuous Data Qualified',
'One Shot Start A Stop A Level', 'NTG One Shot', 'Triggered Grab'

Read only: Only while acquiring

UseHardwareROI
An enumeration, with only the Boolean 'true' and 'false' options available, which indicates whether the BitFlow
board's hardware Region Of Interest (ROI) support should be used (when 'true'), or if the ROI should be
extracted via software alone. Hardware ROI has greater throughput and will usually require less memory for
the same number of BuffersAllocated, but some cameras and configurations do not work well with hardware
ROI, so software is available as a more reliable alternative; hardware ROI is not allowed when using Alta
boards, as it is particularly problematic with analog cameras. Try setting UseHardwareROI to 'false' if
acquisition becomes problematic when using ROI. Proper setup of a camera's configurations may remedy
problems related to hardware ROI.

The acquisition system used when UseHardwareROI is 'true' is actually a mixed-mode hardware/software
hybrid, as BitFlow boards do not allow for pixel precise ROI values. When an exact ROI is not possible, the
closest-fit larger ROI area is set in hardware and the exact pixel area is extracted in software, mostly preserving
the benefits of hardware ROI, while providing all the convenience of software ROI. If ROI acquisition without
any software cropping is desired, consult the CiAqROISet function documentation in the BitFlow SDK
Reference Manual to determine valid area values for your board, and simply ensure to remain within those
constraints.

Type: Enumeration
Default value: 'true' ('false' for all Alta model boards)
Valid values: 'true', 'false'
Read only: Only while acquiring (always for all Alta model boards)

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

http://www.bitflow.com/index.php/Downloads
http://www.bitflow.com/index.php/Downloads
http://www.bitflow.com/index.php/Downloads

Appendix A: Notes on Data-types

I. IMAQ Integers and Unsigned Integer Properties
MATLAB's Image Acquisition Toolbox uses 32-bit signed integers to represent integer values, but several of
the custom features exposed by the BitFlow adaptor (BFRegVal, CXPRegAddr, etc.) represent 32-bit unsigned
integer values and indices. For values less than 0x80000000 (decimal value 2,147,483,648) the native
MATLAB dec2hex and hex2dec functions are perfectly adequate for conversion but for greater values, they
will provide inaccurate values results, or fail altogether. To alleviate this problem, the bf_dec2hex.m and
bf_hex2dec.m MATLAB script functions are provided in Appendix B: M-Functions, which facilitate conversion
between signed and unsigned integers using two's complement and sign inversion, otherwise replicating the
dec2hex and hex2dec functionality.

II. Hex-array Strings
MATLAB's Image Acquisition Toolbox allows for custom properties of a variety of different types, but
unfortunately, none of these correspond well to the concept of an arbitrary-length byte-array, the native format
for Camera Link Serial and CoaXPress register data. This data is exposed in a near raw form using ASCII
string arrays (see CXPRegReadAscii, CXPRegWriteAscii, CLSerialReadAscii, and CLSerialWriteAscii), but
ASCII strings are inadequate for the case of true binary data; zero bytes would be interpreted as ASCII null-
terminators. To accommodate the need for true binary data access, the BitFlow adaptor uses a hex-array string
format to read and write raw data (see CXPRegReadHex, CXPRegWriteHex, CLSerialReadHex, and
CLSerialWriteHex). This string format encodes individual bytes of binary data as hexadecimal pairs, so that the
string “Hello!” would encode as “48656C6C6F2100”, where each digit pair is the hex representation of an
ASCII character, with the final “00” representing the string's null-terminator.

For the user's convenience, two MATLAB script functions are included in Appendix B: M-Functions,
bf_bytary2hexstr.m and bf_hexstr2bytary.m, which will perform the conversion from hex-string to MATLAB
byte-array, or vice versa, in a single step.

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

Appendix B: M-Functions

I. bf_dec2hex.m
function [hex_val] = bf_dec2hex(dec_val)
%BF_DEC2HEX Convert a signed 32-bit int to a hex number
% Regular dec2hex converts unsigned integers to hex strings.
% This function converts signed 32-bit integers to hex strings.

if dec_val < 0 % If so, perform a sign inversion and

% two's complement operation.
 dec_val = uint32 (-dec_val); % Invert and convert to an unsigned int.
 dec_val = bitcmp (dec_val) + 1; % Perform the two's complement operation.
end

hex_val = dec2hex (dec_val); % Convert the decimal value to a hex string.

end

II. bf_hex2dec.m
function [dec_val] = bf_hex2dec(hex_val)
%BF_HEX2DEC Convert a hex number to a signed 32-bit int
% Regular hex2dec will always produce an unsigned int. This function
% produces the signed 32-bit integer represented by the hex string.

dec_val = hex2dec (hex_val); % Determine the unsigned integer value.
dec_val = uint32 (dec_val); % Cast the value to an unsigned integer container.

if dec_val > 2147483647 % If so, perform a two's complement and
% sign inversion. 2147483647 == 0x7fffffff.

 dec_val = bitcmp (dec_val); % Determine the complement.
 dec_val = -int32 (dec_val) – 1; % Perform inversion and 'two' the
end % complement (must be done after

% int32 conversion to prevent overflow;
end % int32 == [-2147483648 2147483647]).

III. bf_bytary2hexstr.m
function [hex_array] = bf_bytary2hexstr(byte_array)
%bf_bytary2hexstr Convert an input byte array into a hex-array string.

 % Convert each byte into a 2-digit hex value.
 hex_array = dec2hex(uint8(byte_array), 2);

 % Transpose to put items back in the correct order.
 hex_array = transpose(hex_array);

 % Reshape to a single row string array.
 hex_array = reshape(hex_array, 1, []);

end

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

IV. bf_hexstr2bytary.m
function [byte_array] = bf_hexstr2bytary(hex_array)
%bf_hexstr2bytary Convert an input hex-array string into a byte array

 % Put each pair in a column.
 byte_array = reshape(hex_array, 2, []);

 % Pad each column with whitespace.
 byte_array = [byte_array; repmat(' ', [1, size(byte_array, 2)])];

 % Convert each column from a hex string to its uint8 byte value.
 byte_array = uint8(sscanf(byte_array, '%x'));

 % Restore the array to a single row.
 byte_array = reshape(byte_array, 1, []);

end

BitFlow, Inc. | 400 West Cummings Park, Suite 5050 | Woburn, MA 01801 USA | 781-932-2900 | www.bitflow.com

	Introduction
	Device Specific Property Usage
	The Source Object
	Accessor and Modifier Methodology
	Advanced Adaptor Initialization

	BitFlow Adaptor Device Specific Properties
	BFReg
	BFRegVal
	BuffersAllocated
	BuffersToUse
	CLSerialBaudRate
	CLSerialBytesDropped
	CLSerialBytesQueued
	CLSerialLineEndAscii
	CLSerialLineEndHex
	CLSerialQueueLen
	CLSerialReadAscii
	CLSerialReadHex
	CLSerialReadLen
	CLSerialTimeout
	CLSerialWriteAscii
	CLSerialWriteHex
	CXPRegAddr
	CXPRegReadAscii
	CXPRegReadHex
	CXPRegReadLen
	CXPRegVal
	CXPRegWriteAscii
	CXPRegWriteHex
	Exposure
	GPIn0 to GPIn4
	GPOut0 to GPOut6
	LineFrame
	TriggerMode
	UseHardwareROI

	Appendix A: Notes on Data-types
	I. IMAQ Integers and Unsigned Integer Properties
	II. Hex-array Strings

	Appendix B: M-Functions
	I. bf_dec2hex.m
	II. bf_hex2dec.m
	III. bf_bytary2hexstr.m
	IV. bf_hexstr2bytary.m

