Definitions for vss_bitflow.dll

All functions are declared as int; the returned integer is always an error code.  0 indicates no error. Error codes are as follows:

Errors:

Error
Description

5000
Error finding the specified board type and number installed in the system.

5001 
Error opening board.

5002 
The board must be opened before calls to other BitFlow VI’s are made.

5003 
Unable to allocate memory for the image buffer.

5004 
An invalid trigger mode was used.

5005 
Cannot change camera files until cleanup is called. After cleanup is called, the camera file can be changed and setup must be called.

5006 
Could not find the indexed camera file. Verify that the camera file is loaded in SysReg.

5007 
Cannot load the LUT until cleanup is called.

5008 
Could not load LUT because the board doesn’t have a LUT.

5009 
Error loading LUT because the number of entries is too small for the LUT on the board. For example a 12 bit LUT needs 4096 entries.

5010 
Error loading LUT. Invalid LUT mode.

5011 
Error writing LUT.

5012 
Invalid image buffer pointer.

5013 
As of version 7.0, IMAQ does not support 24 bit RGB. Please change the camera file to use 32 RGB.

5014 
Error with acquisition setup.

5015 
Acquisition setup must be called first before calling this vi.

5016 
An overflow occurred and the board could not be reset.

5017 
Error snapping a frame.

5018 
Error waiting for frame. A possible cause could be a timeout, try increasing the timeout value in the camera file.

5019 
The grab command failed.

5020 
Error waiting for frame. A possible cause could be a timeout, try increasing the timeout value in the camera file.

5021 
The board did not close properly.

5022 
Error aborting acquisition.

5023 
Error resetting acquisition.

5024 
Error masking the LUT, because there is no LUT on the board.

5025 
Error setting LUT mask.

5026
There must be at least one buffer allocated for acquisition.

5027
Invalid buffer pointer array.

5028
Unable to allocate memory for QTabs.

5029
Error creating Relative QTabs.

5030
Error creating physical QTabs.

5031
Error linking QTabs.

5032
Error Engaging QTabs.

5033
Error issuing a DMA go.

5034
Error Freeing QTabs.

5035
A call to the wrong cleanup function. Please call buffer cleanup instead.

5036
A call to the wrong cleanup function. Please call cleanup rather than buffer cleanup.

5037
Error setting control exposure for NTG.

5038
Error using CiEncoderDividerSet for NTG.

5039
Error getting GPOut data.

5040
Error setting GPOut.

5041
Bad Acquisition engine.

5042
Error setting acquisition frame size.

5043
Attempt to access register not on the opened board.

5044
Error in Register Poke.

5045
Error looking up Register Name other than Register not on board.

Functions

The updated driver for BitFlow SDK 2.0, or greater, supports opening more than one board, and capturing images from all open boards. To handle multiple boards there are two new parameters for all functions BrdRef and dupBrdRef. As boards are open they are assigned a reference number. In the case of multiple boards, this reference number must be passed into BitFlow VI’s. BrdRef is this input reference number. The reference number is then outputted from the VI. The output reference number is represented by dupBrdRef. The only exceptions to this are BF_Open and BF_Close. BF_Open will open the appropriate board specified by BoardNum and BoardName, then assign a board reference number. There is no reference number input for BF_Open. BF_Close only requires the input reference number.

int DLLEXPORT BF_Open(int *imgsize, int *bitdepth, int *bytesperpixel, int *xsize, int *ysize, int BoardNum, int BoardName, int *dupBrdRef);

Opens the BitFlow Board specified by the BoardNum and BoardName parameters.  This must be run prior to any other BitFlow VIs.  Image parameters are returned.

Inputs:

   BoardNumber: If more than one board is installed in the system, will specify which board to open. Board 0 is the default.

   BoardType: This parameter specifies the board type to open, a RoadRunner or Raven. The default for this parameter is “Auto Detect”. With Auto Detect selected the driver will search for a RoadRunner and if one is found, will open the RoadRunner. If no RoadRunner was found, the driver will search for a Raven. If a Raven is found, it will be opened. If neither a RoadRunner nor a Raven is found, an error will be returned. Auto Detect should only be used with one board in the system. If more than one board is installed in the host system, BoardType should be specific in the board that it to be opened up.

Outputs:

    imagesize: number of bytes of memory needed to store the image.

    bitdepth: number of bits per pixel.

    Bytes Per Pixel: number of bytes per pixel.

    Xsize: image width (in pixels).

    Ysize: image height (in pixels).

int DLLEXPORT BF_ImageInfo(int *imgsize, int *bitdepth, int *bytesperpixel, int *xsize, int *ysize, int **pBuffer, int BrdRef, int *dupBrdRef);

Returns information about the images generated by the camera.

Outputs:

    imagesize: number of bytes of memory needed to store the image.

    bitdepth: number of bits per pixel.

    Bytes Per Pixel: number of bytes per pixel.

    Xsize: image width (in pixels).

    Ysize: image height (in pixels).

    pBuffer: points to the start of the buffer used to store the image.  To access the image in C, pass pBuffer by value into a parameter declared as void * in C.  This number will be 0 if no buffer is allocated.  Normally, setup.vi sets the pointer and close.vi clear this pointer.

int DLLEXPORT BF_AllocBuffer(int *imgsize, void **Buf, int BrdRef, int *dupBrdRef);

imgsize=input, Buf = output

Allocates memory for the image.  pBuffer is a C style pointer to a memory buffer that may be passed directly into Setup Primitive.vi.  Pass it by value into a C variable declared as void * to use in C functions.  FreeBuffer.vi will free the allocated memory.  imagesize is the image size in bytes.  Pass the imagesize output of open.vi or Image Info.vi to the imagesize input.

int DLLEXPORT BF_TriggerMode(int *mode, int BrdRef, int *dupBrdRef);

mode = input

Disables or enables the use of an external trigger. This VI along with BitFlow's camera file, will determine if the mode of triggering is valid.

Modes:

   Disable external trigger: External trigger not used.

   Enable external trigger: Using external trigger.

int DLLEXPORT BF_SetSWtrigger(int triggerA, int triggerB, int BrdRef, int *dupBrdRef);

Sets triggers via software.  Use to simulate hardware triggering or to bypass hardware triggering.  Internally, the software trigger is ORed with the hardware trigger.  Regardless of the hardware trigger settings, the software trigger is always active HI.  If the input is nonzero, the corresponding trigger line will be asserted.  If the input is zero, then nothing will occur.

int DLLEXPORT BF_SelectCamera(int index, int BrdRef, int *dupBrdRef);

Selects one of the preconfigured cameras and initializes the framegrabber for that camera.  Image acquisition must be stopped before calling this VI.  Camera index is the number of the camera that is desired.  Index 0 is the first configured camera, 1 is the second, etc.  After calling this VI, a new image must be created so that it is properly sized for the camera.

This VI is intended to be used to switch between different configuration files for the same camera.  This VI may not work when attempting to switch to a camera that is very different from the default.

If this VI is not run, then the first camera is always used.

int DLLEXPORT BF_LoadLUT(int mode, void *Buf, int numBufEntries, int BrdRef, int *dupBrdRef);


//numBufEntries is the number of 8 or 16 words in the buffer


//for 8-bit mode, the buffer should be packed bytes.


//for 12 or 16-bit mode, the buffer should be packed 16-bit words.

Loads and initializes the framegrabber's lookup table (LUT).  Image acquisition must be stopped before calling this VI (i.e. call this VI before setup.vi and after open.vi).  The lookup table is a hardware unit to translate pixel values.  Normally, if the camera reads in a pixel value of 0, the framegrabber will output 0.  A lookup table can be used to change this default pixel mapping.  For example to invert the colors in 8-bit images, the lookup table will change pixel values 0 to 255, 1 to 254, ..., 255 to 0.  Lookup tables are also quite useful for performing thresholds in hardware.

Inputs:

Mode: refers to the pixel depth.  8-bit mode will translate 8-bit camera pixels to 8-bit pixels.  12-bit mode will translate 12-bit camera pixels to 16-bit pixels, 16-bit mode will translate 16-bit camera pixels to 16-bit pixels if the hardware is so equipped.  Note that most roadrunner models do NOT support 16-bit mode (only boards with a serial number that contain an L near the end support 16-bit mode).  8-bit and 12-bit modes are supported by all roadrunner models. Raven only supports the 8-bit mode. There are 4 other 8-bit modes that allow the programming of the individual lanes, 8-bit Lane 0, 8-bit Lane 1, 8-bit Lane 2, and 8-bit Lane 3.

Mode definitions:

Mode 0 – 12-bit LUT across lanes 0 and 1.

Mode 1 – 16-bit LUT across lanes 0 and 1.

Mode 2 – 8-bit LUT across lanes 0 through 4.

Mode 3 – 8-bit LUT using only lane 0.

Mode 4 – 8-bit LUT using only lane 1.

Mode 5 – 8-bit LUT using only lane 2.

Mode 6 – 8-bit LUT using only lane 3.

Lookup Table (*Buf): an array of values used to do pixel translations.  Pixel value 0 is changed to the contents of array element 0.  Pixel value 1 is changed to array element 1, etc.  For normal images, the contents of the array will equal its index (i.e. element0=0, element 1=1, 2=2, etc.).  The array must be sized so that an entry exists for each pixel.  8-bit mode requires the array to be of length 256, 12-bit mode requires 4096, and 16-bit mode requires 65536.  Length checking is not performed.  If the array is too short, the translation of pixel values not in the array will be random.

The lookup table is reset and disabled every time open.vi is called.  If this VI is not run, then the lookup table will not be used.

Example:

To invert 8-bit images, use 8-bit mode and create a 256-element lookup table.  The lookup table will be set to the following:

Element 0 will be 255, element 1 will be 254, element 2 will be 253, ..., element 254 will be 1, element 255 will be 0.

int DLLEXPORT BF_Setup(void *Buf, int LineWidth, int BrdRef, int *dupBrdRef);

input = *Buf, BorderSize, LineWidth

Sets up the framegrabber for image acquisition.  This VI does not check the image size.  An image that is sized too small may cause a crash.  Use BitFlow Open (high level VI) or New Image to create a properly sized image.  After setup has been called, GetFrame.vi may be called any number of times to get images.  Alternately, Continuous Grab.vi may be called to continuously get images continuously.

Buffer Pointer is a C style pointer to a block of memory properly sized for images.  Make sure a sufficient amount of memory is allocated for the buffer (use image size from open or image info).

LineWidth is passed to Setup from the Imaq GetImagePixelPtr. This is the Xsize of the image including the border.

int DLLEXPORT BF_GetFrame(int BrdRef, int *dupBrdRef);

Acquire a single frame.  Setup must be run prior to this VI.  This VI differs from the standard low-level get frame VI in that it does not check the image size or buffer pointer.

int DLLEXPORT BF_FastGetFrame(int BrdRef, int *dupBrdRef);

Acquire a single frame.  Setup must be run prior to this VI.  This VI is asynchronous and does less error checking than the normal getframe.  Be careful to not change the image size or delete the image in between running setup and this VI to prevent possible crashes.  This VI returns before image acquisition is complete.  Use Wait For Frame.vi to wait for image acquisition to complete.

int DLLEXPORT BF_Grab(int BrdRef, int *dupBrdRef);

Acquire images continuously.  Setup must be run prior to this VI.  This VI differs from the standard low-level continuous grab VI in that it does not check the image size or buffer pointer.

int DLLEXPORT BF_Wait4Frame(int Timeout, int BrdRef, int *dupBrdRef);

input = Timeout

Returns when acquisition of the next frame is complete or if the timeout value has expired. The Timeout parameter is in mSec.  This VI is intended for use only with Fast Get Frame.vi.  Use status.vi for continuous grab mode.

int DLLEXPORT BF_Stop(int BrdRef, int *dupBrdRef);

Stops image acquisition.  Use this to ensure that the framegrabber isn't overwriting the image currently in memory.  There is no need to call setup to re-setup acquisition. After acquisition has stopped any snap or grabbing of  a image will restart acquisition without calling setup again. Stop is intended for use when in continuous grab mode. In snap mode, once a complete frame has been captured acquisition already stops.  This VI does not need to be run before Close.vi.

int DLLEXPORT BF_Close(int BrdRef);

Closes the framegrabber. If the board is not open, board closed will return false.  

int DLLEXPORT BF_Status(int *overflow, int *aqmode, int *CurLine, int *fcount, int BrdRef, int *dupBrdRef);

All parameters are outputs

Returns status information about acquisition.  The following information is given: overflow count, acquisition mode, current line, frame counter, and a next frame indicator.

Overflow is only checked when running in the standard single frame snap mode.  Overflow is generated if the camera's frame rate is too fast for the frame grabber.  The overflow counter indicates the number of times the boards input buffer has overflowed.  Normally this value is zero.

Mode will be 0, 2, or 3.  0 indicates no more frames will be acquired.  2 indicates single frame acquisition mode, but acquisition has not yet started.  As soon as acquisition starts, the mode will be set to 0.  3 indicates that the board is in continuous grab mode.

Current Line is the line number that is currently being acquired.  This number does not get updated very frequently and is likely to be invalid by the time it is read.

Frame count increments each time a new frame is received.  Internally it is only a 4-bit number so it will only contain values between 0 and 7.

Frame changed? is true if frame count has changed since the last time this VI was called.

int DLLEXPORT BF_Cleanup (int BrdRef, int *dupBrdRef);

Frees resources created by setup.vi. Makes sure the board is in a stable state. After calling Cleanup, setup must be called again before issuing a grab or snap.

int DLLEXPORT BF_FreeBuffer(int BrdRef, int *dupBrdRef);

Should be used to clean up resources created with the AllocBuffer VI.

Int DLLEXPORT BF_ResetAcquisition(int BrdRef, int *dupBrdRef);

This function will abort the frame being acquired then reset the acquisition engine, leaving the board in a state ready to re-issue a grab or a snap. The intent of this function is to be used to recover after an error such as an overflow.

Int DLLEXPORT BF_MaskBits(int BrdRef, int *dupBrdRef);

This function will mask out the upper bits for 10 and 12 bit data being acquired into Labview. With 10 and 12 bit data the upper 6 or 4 bits can float to any value. If this vi is called before the setup.vi and after the open.vi, the upper 6 or 4 bits will be zero. This function can be called for any combination of 10 or 12 bit data and 12 or 16 bit LUT on the BitFlow framegrabber. All the work is done within the function to determine the bit depth of the data and which LUT is on the framegrabber. All the user has to do is place this vi in between vi’s open and setup.

If this vi is called with any camera data other than 10 or 12 bits, the LUT will not be used. This way the user can change between an 8 bit camera and a 10 bit camera and not have to change their vi. The LUT can still be programmed with 8, 24, and 32 bit cameras by using the config lut vi.

int DLLEXPORT BF_BufferSetup(void** BufPtrArray, int LineWidth, int NumBuffers, int BrdRef, int *dupBrdRef)

Set up up the board for image acquisition into multiple buffers. After Buffer Setup has been called, the low level snap, and grab, vi's should be called rather than the Get frame.vi, fast get frame and grab vi's. See the Multi-Buffer Snap, Snap Async and Grab example vi's for usage. The BufferCleanup.vi should be called rather than cleanup.vi, for freeing resources.

int DLLEXPORT BF_BufferCleanup(int BrdRef, int *dupBrdRef)

Frees all resources used by the acquisition process when using the BufferSetup vi. Makes sure the board is in a stable state. After calling BufferCleanup, BufferSetup must be called again for image acquisition.

int DLLEXPORT BF_NTGSetup(int BrdRef, int *dupBrdRef, double Exposure_ms, double Period_ms, int TriggerMode, int Assert, int UserSignal);

   Gives access to NTG exposure control. Exposure_ms is the exposure time in milliseconds and Period_ms is the Line/Frame period in milliseconds. TriggerMode controls whether the NTG is in Free Run, or One Shot (and trigger source for One Shot). Assert and UserSignal control the polarity and output pin of the signal. See CiConExposureControlSet in the SDK manual. NTGEncDiv.vi provides an example of how to use this function along with BF_NTGEncDiv.

int DLLEXPORT BF_NTGEncDiv(int BrdRef, int *dupBrdRef, double ScaleFactor, int ForceDC, int OpenLoop);

   Allows the use of the Encoder/Divider to modify the incoming encoder frequency to increase or decrease the incoming encoder frequency. Use in conjuction with BF_NTGSetup. See CiEncoderDividerSet in the SDK manual.

int DLLEXPORT BF_GetGPOUT(int BrdRef, int *dupBrdRef, int *Status);

   Read the status of the GPOUTx. The status is returned as an int, where each bit in Status represents a GPOut. Status can easily be converted to its binary value to get the individual values as demonstrated in the GPOut.vi example.

int DLLEXPORT BF_SetGPOUT(int BrdRef, int *dupBrdRef, int GPout, int Level);

   Set the GPOUTx values to Level. Which GPOUTx to write to is selected using an integer mask. The below integer values correspond to the mask for each GPOUTx. A mask for multiple GPOUTx can be written by taking the bitwise OR of desired masks. See GPOut.vi example for an how to use.


1 - Set the the value of GPOut0.


2 - Set the the value of GPOut1.


4 - Set the the value of GPOut2.


8 - Set the the value of GPOut3.


16 - Set the the value of GPOut4.


32 - Set the the value of GPOut5.

int DLLEXPORT BF_AqFrameSize(int BrdRef, int *dupBrdRef, int XSize, int YSize, int AqEngine);

   On the fly acquisition frame size change. Acquisition must be stopped before calling BF_AqFrameSize.  The underlying SDK function, CiAqFrameSize(), needs to have CiAqCleanUp() called first. Currently, the DLL does this. XSize must be a multiple of 8 but YSize can be any integer. It is left to the user to not exceed the sensor size. This function is limited to use with free run camera files, and may not work with more sophisticated camera files. See the SDK manual entry CiAqFrameSize for more detail. See FrameSizeReset.vi for an example.

int DLLEXPORT BF_RegPeek(int BrdRef, int *dupBrdRef, BFU32 RegId);

   This provides access for viewing any register on the board. Unlike other functions BF_RegPeek, instead of returning an error code, it returns the value of the register identified by RegId. The register can either be a full 32-bit register a bit field that is part of a register. Refer to the hardware manual for information on registers. The BF_RegNametoId() function can be used to convert between register name and ID.

int DLLEXPORT BF_RegPoke(int BrdRef, int *dupBrdRef, BFU32 RegId, BFU32 RegValue);

   Sets the value of register RegId to RegValue. The register can either be a full 32-bit register a bit field that is part of a register. Refer to the hardware manual for information on registers. The BF_RegNametoId() function can be used to convert between register name and ID. 

int DLLEXPORT BF_RegNametoId(int BrdRef, int *dupBrdRef, int *RegId, PBFCHAR pRegName, int size, BFBOOL flag);

   Convert between register name and ID, depending on the value of “flag.” 

flag=0:

Pass pRegName and return the RegId. The DLL will loop through all register IDs until it finds a match for the value in pRegName. This could cause delays in a program if called many times.

flag=1: 

Enter the register ID and the name of that register is returned. This could be used to list all registers on the board if called in a loop.

